
reqT.org – A Scala DSL for Constraint-based
Requirement Engineering using JaCoP

Björn Regnell

Lund University
Sweden

The 12th Workshop of the Network of Sweden-based researchers
and practitioners of Constraint programming, 2013

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

Software Requirements Engineering

Sub-disciplines of Requirements Engineering (RE):
I Elicitation: generating candidate reqts and context knowledge

I Specification: documenting candidate reqts

I Validation: checking that the (documented) reqts are good enough

I Prioritization: assessing candidate reqts based benefit, cost, risk, urgency, ...

I Selection: deciding which reqts to implement when, under constraints of estimated
stakeholder priorities, return-on-investment, inter-dependencies, resource
constraints, timing issues, ...

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

Release Planning in Software Develepment

[Ruhe et al.]

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

Why Constraint Solving in Requirements Engineering?

Some potential benefits of CSP in RE:
I Flexible specification of decision problems

I Prioritization
I Release Planning

I Interactive exploration of the solution space

I Out-of-the-box optimization support

Some challenges:

I How to integrate CSP with RE technology
and make it user friendly in the domain?

I How to model CSP problems at the right
abstraction level given great uncertainties?

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT.org – a Semi-Formal, Open and Scalable
Requirements Engineering DSL embedded in Scala

A reqT model includes a sequence of graph parts
<Entity> <Edge> <NodeSet>
separated by comma and wrapped inside a Model()

var myRequirements = Model(

Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),

Feature("f1") requires (Feature("f2"), Feature("f3")),

Stakeholder("s1") assigns(Prio(1)) to Feature("f2")

)

Download: http://reqT.org

Source code: https://github.com/reqT/reqT

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

http://reqT.org
https://github.com/reqT/reqT

reqT models are graph structures with
Entities & Attributes (nodes) and Relations (edges)

var myRequirements = Model(

Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),

Feature("f1") requires (Feature("f2"), Feature("f3")),

Stakeholder("s1") assigns(Prio(1)) to Feature("f2")

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

Overview of the reqT metamodel

Element

Concept Structure

Node

Entity(id: String)

Context

Product

Release

Stakeholder

Requirement

Feature

Goal

Attribute[T](value: T)

Edge

AttributeEdge

Relation

has

Key(Entity, Edge)

NodeSet(Node, Node, ...)

owns

excludes

Resource

Model

scala.collection.immutable.Map[Key, NodeSet]

Function

UserStory

Interface

Spec[String]

Gist[String]

Status[Level]

Submodel[Model]

Constraints[Vector[Constr[Any]]

Prio[Int]

Design

precedesBenefit[Int]

Cost[Int]

Order[Int]

inherits

requires

helps

hurts

Abstract

Type

subtype

assigns[Attribute]

Quality

...

...

... ...

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT models can be hierarchical
with recursive submodels in a tree structure

var myReqs = Model(

Feature("nice") has Spec("this is a nice feature"),

Feature("cool") has Spec("this is a cool feature"),

Stakeholder("Anna") has Submodel(

Feature("nice") has Prio(1),

Feature("cool") has Prio(2)

),

Stakeholder("Martin") has Submodel(

Feature("nice") has Prio(2),

Feature("cool") has Prio(1)

)

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT can reference values of attribute in deeply
nested submodel structures using the ! operator

Feature("f")!Prio == Ref[Int](Vector(Feature(f)),Prio)

Stakeholder("a")!Feature("g")!Benefit ==

Ref[Int](Vector(Stakeholder(a),Feature(g)),Benefit)

val m = Model(

Feature("f") has Prio(1),

Stakeholder("a") has Submodel(

Feature("g") has Benefit(2),

Resource("x") has Submodel(

Feature("h") has Cost(3)

)

)

)

m(Feature("f")!Prio) == 1

m(Stakeholder("a")!Feature("g")!Benefit) == 2

m(Stakeholder("a")!Resource("x")!Feature("h")!Cost) == 3

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT includes a Scala-embedded DSL for CSP that
wraps the JaCoP solver

I The DSL uses Scala immutable case classes

I The search is set up using JaCoP when calling solve

I The search is controlled by parameters to solve

I Search results can be accessed through a
scala.collection.immutable.Map

result.lastSolution(Var("x"))

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

Constraint-based Priority Ranking example:
5 features ranked from 1 to 5

reqT:

val n = 5

var f = vars(n, "f")

val Result(conclusion, nSol, sol, _ , _) =

Constraints(

f::{0 until n},

AllDifferent(f),

f(0) #> f(1),

f(1) #> f(2),

f(2) #< f(3),

forAll(0 until n) { f(4) #>= f(_) }

).solve(Satisfy)

MiniZinc:

int: n = 5;

array[1..n] of var 1..n: f;

constraint

alldifferent(f);

constraint f[1] > f[2];

constraint f[2] > f[3];

constraint f[3] < f[4];

constraint

forall (i in 1..n)

(f[5] >= f[i]);

solve satisfy;

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT includes a Scala-embedded DSL for constraints
over integer variables

Some key parts of the implementation in Scala:

Var("x") #== Var("y") //> reqt.XeqY[String] = XeqY(Var(x),Var(y))

case class Var[+T](ref: T)

implicit def refToVar[T](r: Ref[T]): Var[Ref[T]] = Var(r)

case class Interval(min: Int, max: Int)

implicit def rangeToInterval(r: Range): Interval = Interval(r.min, r.max)

def vars[T <: AnyRef](vs: T *): Vector[Var[T]] = vs.map(Var(_)).toVector

def vars(n: Int, prefix: String): Vector[Var[String]] =

(for (i <- 0 until n) yield Var(s"$prefix$i")).toVector

def forAll[T](xs:Seq[T])(f: T => Constr[_]) = And(xs.map(f(_)).toVector)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT CSP: parameters to solve

def solve[T](

objective: Objective = Satisfy,

timeOutOption: Option[Long] = None,

solutionLimitOption: Option[Int] = None,

valueSelection: ValueSelection = jacop.IndomainRandom,

variableSelection: VariableSelection = jacop.InputOrder,

assignOption: Option[Seq[Var[T]]] = None

): Result[T]

sealed trait Objective

case object Satisfy extends Objective

case object CountAll extends Objective

case object FindAll extends Objective

sealed trait Optimize[+T] extends Objective { def cost: Var[T] }

case class Minimize[+T](cost: Var[T]) extends Optimize[T]

case class Maximize[+T](cost: Var[T]) extends Optimize[T]

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT CSP: Result and Solutions

case class Result[T](

conclusion: Conclusion,

solutionCount: Int = 0,

lastSolution: Map[Var[T], Int] = Map[Var[T], Int](),

interuptOption: Option[SearchInterupt] = None,

solutionsOption: Option[Solutions[T]] = None

)

sealed trait Conclusion

case object SolutionFound extends Conclusion

case object SolutionNotFound extends Conclusion

case object InconsistencyFound extends Conclusion

case class SearchFailed(msg: String) extends Conclusion

class Solutions[T](//the only non-case class (jacop mutability propagates)

val jacopDomains: Array[Array[JaCoP.core.Domain]],

val jacopVariables: Array[_ <: JaCoP.core.Var],

val nSolutions: Int,

val lastSolution: Map[Var[T], Int]) {

def solutionMap(s: Int): Map[Var[T], Int] = ...

def printSolutions: Unit = ...

...

}

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Entities can have a Constraints attribute
containing a sequence of constraints.

var myReqs = Model(

Feature("nice") has Spec("this is a nice feature"),

Feature("cool") has Spec("this is a cool feature"),

Stakeholder("Anna") has Constraints(

(Feature("nice")!Prio) #< 10,

(Feature("nice")!Prio) #>= 1,

(Feature("cool")!Prio)::{2 to 7}

),

Stakeholder("Martin") has Constraints(

(Feature("nice")!Prio) #< 3,

(Feature("nice")!Prio) #!= 1,

(Feature("cool")!Prio)::{5 to 10}

)

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Input Data Model

val m = Model(

Stakeholder("kalle") has (Prio(10), Submodel(

Feature("F1") has Benefit(20),

Feature("F2") has Benefit(20),

Feature("F3") has Benefit(20)

)),

Stakeholder("stina") has (Prio(20), Submodel(

Feature("F1") has Benefit(5),

Feature("F2") has Benefit(15),

Feature("F3") has Benefit(35)

)),

Resource("developer") has Submodel(

Release("a") has Capacity(100),

Release("b") has Capacity(100),

Feature("F1") has Cost(10),

Feature("F2") has Cost(70),

Feature("F3") has Cost(20)

),

Resource("tester") has Submodel(

Release("a") has Capacity(100),

Release("b") has Capacity(100),

Feature("F1") has Cost(40),

Feature("F2") has Cost(10),

Feature("F3") has Cost(50)

),

Release("a") has Order(1),

Release("b") has Order(2)

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning: Vectors of Input Entities
to prepare imposed constraints

val features = (m.flatten / Feature).sourceVector

val releases = (m / Release).sourceVector

val resources = (m / Resource).sourceVector

val stakeholders = (m / Stakeholder).sourceVector

val constraints = ??? // to be defined

val utility = ??? // to be defined

val (m2, r) = Model().impose(constraints).solve(Maximize(utility))

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning: Assign values from Model

The XeqC case class constraint, that can be constructed by the #==

infix operator on Var, is used to make a sequence of constraints
that grounds integer variables to release planning input data from a
reqT Model.

def assignValuesFromModel(m: Model) =

Constraints(

stakeholders.map(s => Var(s!Prio) #== m(s!Prio)) ++

releases.map(r => Var(r!Order) #== m(r!Order)) ++

(for (s <- stakeholders; f <- features) yield

Var(s!f!Benefit) #== m(s!f!Benefit)) ++

(for (res <- resources; f <- features) yield

Var(res!f!Cost) #== m(res!f!Cost)) ++

(for (res <- resources; rel <- releases) yield

Var(res!rel!Capacity) #== m(res!rel!Capacity))

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Constraints 1(9)

All Features shall have an Order integer attribute to model that it
can be allocated to some Release (corresponding to the Order
attribute of that Release).

features.map(f => (f!Order)::{1 to releases.size})

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Constraints 2(9)

For all stakeholders s and all features f:
Var(benefit(s,f)) is the benefit of the feature according to that
stakeholder multiplied with the priority of the stakeholder.

for (s <- stakeholders; f <- features) yield

XmulYeqZ(

Var(s!f!Benefit), Var(s!Prio), Var(s"benefit($s,$f)")

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Constraints 3(9)

For all features f, for all stakeholders s:
Var(benefit(f)) is the sum of all stakeholders’ benefits of that f:

benefit(f) =
∑

s

benefit(s, f)

features.map(f =>

Sum(

stakeholders.map(s => Var(s"benefit($s,$f)")),

Var(s"benefit($f)")

)

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Constraints 4(9)

for all releases r, for all features f:
if f is allocated to r then benefit(r , f)) = benefit(f)
else benefit(r , f)) = 0

for (r <- releases; f <- features) yield

IfThenElse(

Var(f!Order) #== Var(r!Order),

Var(s"benefit($r,$f)") #== Var(s"benefit($f)"),

Var(s"benefit($r,$f)") #== 0

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Constraints 5(9)

For all releases r, for all features f:

totBenefit(r) =
∑

f

benefit(r , f)

for (r <- releases) yield

Sum(

features.map(f => Var(s"benefit($r,$f)")),

Var(s"totBenefit($r)")

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Constraints 6(9)

For all releases rel, for all features f, for all resources res:
If f is allocated to rel then cost(rel, f, res) is the cost of that
feature needed by that resource, else it is zero.

for (rel <- releases; f <- features; res <- resources) yield

IfThenElse(

Var(f!Order) #== Var(rel!Order),

Var(s"cost($rel,$f,$res)") #== Var(res!f!Cost),

Var(s"cost($rel,$f,$res)") #== 0

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Constraints 7(9)

For all resources res, for all releases rel, for all features f:

totCost(rel, res) =
∑

f

cost(rel, f , res)

for (res <- resources; rel <- releases) yield

Sum(

features.map(f => Var(s"cost($rel,$f,$res)")),

Var(s"totCost($rel,$res)")

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Constraints 8(9)

For all resources res, for all releases rel:

totCost(rel, res) <= availableCapacity(res, rel)

for (res <-resources; rel <- releases) yield

XlteqY(

Var(s"totCost($rel,$res)"),

Var(res!rel!Capacity)

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Constraints 9(9)

For all releases rel, for all resources res:

totCost(rel) =
∑
res

totCost(rel, res)

for (rel <- releases) yield

Sum(

resources.map(res => Var(s"totCost($rel,$res)")),

Var(s"totCost($rel)")

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning: All 9 Constraints

val releasePlanningConstraints = Constraints(

features.map(f => Var(f!Order)::{1 to releases.size}) ++

(for (s <- stakeholders; f <- features) yield

XmulYeqZ(Var(s!f!Benefit), Var(s!Prio), Var(s"benefit($s,$f)"))) ++

features.map(f => Sum(stakeholders.map(s =>

Var(s"benefit($s,$f)")), Var(s"benefit($f)"))) ++

(for (r <- releases; f <- features) yield

IfThenElse(Var(f!Order) #== Var(r!Order),

Var(s"benefit($r,$f)") #== Var(s"benefit($f)"),

Var(s"benefit($r,$f)") #== 0)) ++

(for (r <- releases) yield

Sum(features.map(f => Var(s"benefit($r,$f)")), Var(s"totBenefit($r)"))) ++

(for (rel <- releases; f <- features; res <- resources) yield

IfThenElse(Var(f!Order) #== Var(rel!Order),

Var(s"cost($rel,$f,$res)") #== Var(res!f!Cost),

Var(s"cost($rel,$f,$res)") #== 0)) ++

(for (res <- resources; rel <- releases) yield

Sum(features.map(f => Var(s"cost($rel,$f,$res)")), Var(s"totCost($rel,$res)"))) ++

(for (res <-resources; rel <- releases) yield

XlteqY(Var(s"totCost($rel,$res)"), Var(res!rel!Capacity))) ++

(for (rel <- releases) yield

Sum(resources.map(res => Var(s"totCost($rel,$res)")), Var(s"totCost($rel)")))

)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning Optimization

val constraints =

assignValuesFromModel(m) ++

releasePlanningConstraints

val utility = Var("totBenefit(Release(a))")

val (m2, r) =

Model().impose(constraints).solve(Maximize(utility))

reqT> val allocationModel = m2 / Feature

allocationModel: reqt.Model =

Model(

Feature("F3") has Order(1),

Feature("F1") has Order(2),

Feature("F2") has Order(2)

)

reqT> val cost = r.lastSolution(Var("totCost(Release(a))"))

cost: Int = 70

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

reqT Release Planning:
Adding coupling and precedence constraints

Coupling: Two features must be in the same release:

(Feature("F1")!Order) #== (Feature("F2")!Order)

Precedence:
One features must be implemented before another feature:

(Feature("F2")!Order) #< (Feature("F3")!Order)

Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

Conclusions and Discussion

ReqT integrates RE with CSP using an object-functional
embedded DSL to solve decision and resource allocation problems
in software engineering.

I Some results so far:
I Basic DSL in place using immutable Scala case classes
I Hiding: variable – store dependencies, mutability etc.
I Integration with JaCoP search parameters, including time-out

and solutions limit
I Outlook on future work:

I More complete implementation of JaCoP 4.0 constraints
I GUI support (MSc Thesis: Oskar Präntare & Joel Johansson)
I Soft constraints
I Stochastic constraints

Any feedback, question, input etc. welcome!!

http://reqT.org
Björn Regnell, Lund University reqT.org – Constraint-based Requirement Engeineering

http://reqT.org

