reqT.org — A Scala DSL for Constraint-based
Requirement Engineering using JaCoP

Bjorn Regnell

Lund University
Sweden

The 12th Workshop of the Network of Sweden-based researchers
and practitioners of Constraint programming, 2013

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

Software Requirements Engineering

B Quality

Sub-disciplines of Requirements Engineering (RE):
» Elicitation: generating candidate reqts and context knowledge
Specification: documenting candidate reqgts

>

» Validation: checking that the (documented) reqts are good enough

» Prioritization: assessing candidate reqts based benefit, cost, risk, urgency, ...
>

Selection: deciding which reqts to implement when, under constraints of estimated
stakeholder priorities, return-on-investment, inter-dependencies, resource
constraints, timing issues, ...

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

Release Planning in Software Develepment
Iteration 1 |—— Release 1

=

\ﬁmﬁhaj—— Release 3 |

\»:f
Human |nte|l|gence Computational intelligence

[Ruhe et al.]

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

Why Constraint Solving in Requirements Engineering?

Some potential benefits of CSP in RE:
» Flexible specification of decision problems
» Prioritization
» Release Planning
» Interactive exploration of the solution space

» Out-of-the-box optimization support

Some challenges:

» How to integrate CSP with RE technology
and make it user friendly in the domain?

» How to model CSP problems at the right
abstraction level given great uncertainties?

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT.org — a Semi-Formal, Open and Scalable

Requirements Engineering DSL embedded in Scala

A reqT model includes a sequence of graph parts
<Entity> <Edge> <NodeSet>
separated by comma and wrapped inside a Model()

var myRequirements = Model(
Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("f1l") requires (Feature("f2"), Feature("f3")),
Stakeholder("sl1") assigns(Prio(1l)) to Feature("f2")

)

Download: http://reqT.org
Source code: https://github.com/reqT/reqT

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

http://reqT.org
https://github.com/reqT/reqT

reqT models are graph structures with

Entities & Attributes (nodes) and Relations (edges)

var myRequirements = Model(
Feature("f1") has (Spec("A good spec."), Status(SPECIFIED)),
Feature("f1") requires (Feature("f2"), Feature("f3")),
Stakeholder("sl1l") assigns(Prio(1l)) to Feature("f2")

Feature
("f3")
Feature
("f2")

assigns(Prio(1))

)

requires

requires

Feature
("F1™)
-, has

has o =
:

Stakeholder("s1")

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

Overview of the reqT metamodel

scala.collection.immutable.Map[Key, NodeSet]

subtype

Structure

Key(Entity, Edge)

NodeSet(Node, Node, ...

AttributeEdge m

Relation

Product | Status[Level] .
Release | Submodel[Model] —,W

Stakehold: | —|r ints[Vector[Constr[Any]] | -
|

)
i)

Attribute[T](value: T)
Entity(id: String)

Requirement Context

{ Goal

Feature

1
-I Function
1

Quality

UserStory

Resource % Prio[Int]

hurts

Benefifint]
assignsf[Attribute]

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT models can be hierarchical

with recursive submodels in a tree structure

var myReqs = Model(
Feature("nice") has Spec("this is a nice feature"),
Feature("cool") has Spec("this is a cool feature"),
Stakeholder("Anna") has Submodel(
Feature("nice") has Prio(1),
Feature("cool") has Prio(2)
)y
Stakeholder("Martin") has Submodel(
Feature("nice") has Prio(2),
Feature("cool") has Prio(1)

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT can reference values of attribute in deeply

nested submodel structures using the ! operator

Feature("f")!Prio == Ref[Int](Vector(Feature(f)),Prio)
Stakeholder("a")!Feature("g") !Benefit ==
Ref[Int](Vector(Stakeholder(a),Feature(g)),Benefit)

val m = Model(
Feature("f") has Prio(1),
Stakeholder("a") has Submodel(
Feature("g") has Benefit(2),
Resource("x") has Submodel(
Feature("h") has Cost(3)

m(Feature("f")!Prio) ==
m(Stakeholder("a")!Feature("g")!Benefit) ==
m(Stakeholder("a")!Resource("x")!Feature("h")!Cost) ==

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT includes a Scala-embedded DSL for CSP that

wraps the JaCoP solver

» The DSL uses Scala immutable case classes
» The search is set up using JaCoP when calling solve
» The search is controlled by parameters to solve

» Search results can be accessed through a
scala.collection.immutable.Map

result.lastSolution(Var("x"))

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

Constraint-based Priority Ranking example:

5 features ranked from 1 to 5

reqT: MiniZinc:
val n =5 int: n = 5;
var f = vars(n, "f") array[l..n] of var 1..n: f;
val Result(conclusion, nSol, sol, _ , _) = constraint
ConstraintsF alldifferent(f);
f::{Q until n}, constraint f[1] > f[2];
AllDifferent(f), constraint f[2] > f[3];
f(0) # f(1), constraint f[3] < f[4];
(1) # f(2), constraint
f(2) #< f(3), forall (i in 1..n)
forAlL(0 until n) { f(4) #>= f(_) } (f[5] >= f[i]);
) .solve(Satisfy) solve satisfy;

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT includes a Scala-embedded DSL for constraints

over integer variables

Some key parts of the implementation in Scala:

Var("x") #== Var("y") //> reqt.XeqY[String] = XeqY(Var(x),Var(y))
case class Var[+T](ref: T)

implicit def refToVar[T](r: Ref[T]): Var[Ref[T]] Var(r)

case class Interval(min: Int, max: Int)
implicit def rangeToInterval(r: Range): Interval = Interval(r.min, r.max)
def vars[T <: AnyRef](vs: T *): Vector[Var[T]] = vs.map(Var(_)).toVector

def vars(n: Int, prefix: String): Vector[Var[String]] =
(for (i <- O until n) yield Var(s"$prefix$i")).toVector

def forAll[T](xs:Seql[T])(f: T => Constr[_]) = And(xs.map(f(_)).toVector)

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT CSP: parameters to solve

def solve[T](
objective: Objective = Satisfy,
timeOutOption: Option[Long] = None,
solutionLimitOption: Option[Int] = None,
valueSelection: ValueSelection = jacop.IndomainRandom,
variableSelection: VariableSelection = jacop.InputOrder,
assignOption: Option[Seq[Var[T]]] = None

): Result[T]

sealed trait Objective

case object Satisfy extends Objective

case object CountAll extends Objective

case object FindAll extends Objective

sealed trait Optimize[+T] extends Objective { def cost: Var[T] }
case class Minimize[+T](cost: Var[T]) extends Optimize[T]

case class Maximize[+T](cost: Var[T]) extends Optimize[T]

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT CSP: Result and Solutions

case class Result[T](
conclusion: Conclusion,
solutionCount: Int = 0,
lastSolution: Map[Var[T], Int] = Map[Var[T], Intl(),
interuptOption: Option[SearchInterupt] = None,
solutionsOption: Option[Solutions[T]] = None

sealed trait Conclusion

case object SolutionFound extends Conclusion

case object SolutionNotFound extends Conclusion

case object InconsistencyFound extends Conclusion

case class SearchFailed(msg: String) extends Conclusion

class Solutions[T](//the only non-case class (jacop mutability propagates)
val jacopDomains: Array[Array[JaCoP.core.Domain]],
val jacopVariables: Array[_. <: JaCoP.core.Varl],
val nSolutions: Int,
val lastSolution: Map[Var[T], Int]) {
def solutionMap(s: Int): Map[Var[T], Int] = ...
def printSolutions: Unit = ...

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Entities can have a Constraints attribute

containing a sequence of constraints.

var myReqs = Model(

Feature("nice") has Spec("this is a nice feature"),

Feature("cool") has Spec("this is a cool feature"),

Stakeholder("Anna") has Constraints(
(Feature("nice")!Prio) #< 10,
(Feature("nice")!Prio) #>= 1,
(Feature("cool")!Prio)::{2 to 7}

)

Stakeholder("Martin") has Constraints(
(Feature("nice")!Prio) #< 3,
(Feature("nice")!Prio) #!= 1,
(Feature("cool")!Prio)::{5 to 10}

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Input Data Model

val m = Model(

Stakeholder("kalle") has (Prio(10), Submodel(
Feature("F1") has Benefit(20),
Feature("F2") has Benefit(20),
Feature("F3") has Benefit(20)

),

Stakeholder("stina") has (Prio(20), Submodel(
Feature("F1") has Benefit(5),
Feature("F2") has Benefit(15),
Feature("F3") has Benefit(35)

),

Resource("developer") has Submodel(
Release("a") has Capacity(100),
Release("b") has Capacity(100),
Feature("F1") has Cost(10),
Feature("F2") has Cost(70),
Feature("F3") has Cost(20)

),

Resource("tester") has Submodel(
Release("a") has Capacity(100),
Release("b") has Capacity(160),
Feature("F1") has Cost(40),
Feature("F2") has Cost(10),
Feature("F3") has Cost(50)

),

Release("a") has Order(1)

Release("b") has Order(2)

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning: Vectors of Input Entities

to prepare imposed constraints

val
val
val
val

val
val

val

features = (m.flatten / Feature).sourceVector
releases = (m / Release).sourceVector
resources = (m / Resource).sourceVector
stakeholders = (m / Stakeholder).sourceVector

constraints = 777 // to be defined
utility = 7?77 // to be defined
(m2, r) = Model().impose(constraints).solve(Maximize(utility))

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning: Assign values from Model

The XeqC case class constraint, that can be constructed by the #==
infix operator on Var, is used to make a sequence of constraints
that grounds integer variables to release planning input data from a
reqT Model.

def assignValuesFromModel(m: Model) =
Constraints(

stakeholders.map(s => Var(s!Prio) #== m(s!Prio)) ++

releases.map(r => Var(r!Order) #== m(r!Order)) ++

(for (s <- stakeholders; f <- features) yield
Var(s!f!Benefit) #== m(s!f!Benefit)) ++

(for (res <- resources; f <- features) yield
Var(res!f!Cost) #== m(res!f!Cost)) ++

(for (res <- resources; rel <- releases) yield
Var(res!rel!Capacity) #== m(res!rel!Capacity))

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Constraints 1(9)

All Features shall have an Order integer attribute to model that it
can be allocated to some Release (corresponding to the Order
attribute of that Release).

features.map(f => (f!Order)::{1 to releases.size})

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Constraints 2(9)

For all stakeholders s and all features f:
Var(benefit(s,f)) is the benefit of the feature according to that
stakeholder multiplied with the priority of the stakeholder.

for (s <- stakeholders; f <- features) yield

XmulYeqZ(
Var(s!f!Benefit), Var(s!Prio), Var(s"benefit($s,$f)")

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Constraints 3(9)

For all features f, for all stakeholders s:
Var(benefit(f)) is the sum of all stakeholders’ benefits of that f:

benefit(f) = Z benefit(s, f)
S

features.map(f =>
Sum (
stakeholders.map(s => Var(s"benefit($s,$f)")),
Var(s"benefit($f)")

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Constraints 4(9)

for all releases r, for all features f:
if f is allocated to r then benefit(r, f)) = benefit(f)
else benefit(r,f)) =0

for (r <- releases; f <- features) yield
IfThenElse(
Var(f!Order) #== Var(r!Order),
Var(s"benefit($r,$f)") #== Var(s"benefit($f)"),
Var(s"benefit($r,$f)") #== 0

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Constraints 5(9)

For all releases r, for all features f:

totBenefit(r) = Z benefit(r, f)
f

for (r <- releases) yield
Sum(
features.map(f => Var(s"benefit($r,$f)")),
Var(s"totBenefit ($r)")

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Constraints 6(9)

For all releases rel, for all features f, for all resources res:
If f is allocated to rel then cost(rel, f, res) is the cost of that
feature needed by that resource, else it is zero.

for (rel <- releases; f <- features; res <- resources) yield
IfThenElse(
Var(f!Order) #== Var(rel!Order),
Var(s"cost($rel,$f,$res)") #== Var(res!flCost),
Var(s"cost($rel,$f,$res)") #== 0

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Constraints 7(9)

For all resources res, for all releases rel, for all features f:

totCost(rel, res) = Z cost(rel, f, res)
f

for (res <- resources; rel <- releases) yield
Sum(
features.map(f => Var(s"cost($rel,$f,$res)")),
Var(s"totCost($rel, $res)")

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Constraints 8(9)

For all resources res, for all releases rel:

totCost(rel, res) <= availableCapacity(res, rel)
for (res <-resources; rel <- releases) yield
XlteqY(

Var(s"totCost($rel,$res)"),
Var(res!rel!Capacity)

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Constraints 9(9)

For all releases rel, for all resources res:

totCost(rel) Z totCost(rel, res)

res

for (rel <- releases) yield
Sum (
resources.map(res => Var(s"totCost($rel,$res)")),
Var(s"totCost($rel)")
)

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning: All 9 Constraints

val releasePlanningConstraints = Constraints(

features.map(f => Var(f!Order)::{1 to releases.size}) ++

(for (s <- stakeholders; f <- features) yield

XmulYeqZ(Var(s!f!Benefit), Var(s!Prio), Var(s"benefit($s,$f)"))) ++
features.map(f => Sum(stakeholders.map(s =>
Var(s"benefit($s,$f)")), Var(s"benefit($f)"))) ++

(for (r <- releases; f <- features) yield
IfThenElse(Var(f!Order) #== Var(r!Order),

Var(s"benefit($r,$f)") #== Var(s"benefit($f)"),

Var(s"benefit($r,$f)") #== 0)) ++
for (r <- releases) yield
Sum(features.map(f => Var(s"benefit($r,$f)")), Var(s"totBenefit($r)"))) ++
for (rel <- releases; f <- features; res <- resources) yield
IfThenElse(Var(f!Order) #== Var(rel!Order),

Var(s"cost($rel,$f,$res)") #== Var(res!f!Cost),

Var(s"cost($rel,$f,$res)") #== 0)) ++
for (res <- resources; rel <- releases) yield
Sum(features.map(f => Var(s"cost($rel,$f,$res)")), Var(s"totCost($rel,$res)"))) ++
for (res <-resources; rel <- releases) yield
XlteqY(Var(s"totCost($rel,$res)"), Var(res!rel!Capacity))) ++
for (rel <- releases) yield
Sum(resources.map(res => Var(s"totCost($rel,$res)")), Var(s"totCost($rel)")))

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning Optimization

val constraints =
assignValuesFromModel(m) ++
releasePlanningConstraints

val utility = Var("totBenefit(Release(a))")

val (m2, r)
Model().impose(constraints).solve(Maximize(utility))

reqT> val allocationModel = m2 / Feature

allocationModel: reqt.Model =

Model(
Feature("F3") has Order(1),
Feature("F1") has Order(2),
Feature("F2") has Order(2)

)

reqT> val cost = r.lastSolution(Var("totCost(Release(a))"))
cost: Int = 70

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

reqT Release Planning:

Adding coupling and precedence constraints

Coupling: Two features must be in the same release:

(Feature("F1")!0Order) #== (Feature("F2")!Order)

Precedence:
One features must be implemented before another feature:

(Feature("F2")!0rder) #< (Feature("F3")!'Order)

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

Conclusions and Discussion

ReqT integrates RE with CSP using an object-functional
embedded DSL to solve decision and resource allocation problems
in software engineering.
» Some results so far:
» Basic DSL in place using immutable Scala case classes
» Hiding: variable — store dependencies, mutability etc.
» Integration with JaCoP search parameters, including time-out
and solutions limit
» Outlook on future work:
» More complete implementation of JaCoP 4.0 constraints
GUI support (MSc Thesis: Oskar Prantare & Joel Johansson)
Soft constraints
Stochastic constraints

v vyy

Any feedback, question, input etc. welcome!!
http://reqT.org

Bjorn Regnell, Lund University reqT.org — Constraint-based Requirement Engeineering

http://reqT.org

