
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

What is essential? – a pilot survey on views about the requirements metamodel of reqT.org

Regnell, Björn

Published in:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics)

DOI:
10.1007/978-3-319-30282-9_16

2016

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Regnell, B. (2016). What is essential? – a pilot survey on views about the requirements metamodel of reqT.org.
In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) (Vol. 9619, pp. 232-239). (Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 9619). Springer.
https://doi.org/10.1007/978-3-319-30282-9_16
Total number of authors:
1

Creative Commons License:
CC BY-SA

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 09. Jan. 2026

https://doi.org/10.1007/978-3-319-30282-9_16
https://portal.research.lu.se/en/publications/711e8ee6-2a9b-453c-bd00-91020182210d
https://doi.org/10.1007/978-3-319-30282-9_16


What is essential? – A pilot survey on views about the
requirements metamodel of reqT.org

Björn Regnell

Dept. of Computer Science, Lund University, Sweden
bjorn.regnell@cs.lth.se

Abstract. [Context & motivation] This research preview paper presents ongo-
ing work on the metamodel of a free software requirements modeling tool called
reqT that is developed in an educational context. The work aims to make an ini-
tial validation of a survey instrument that elicits views on the metamodel of the
reqT tool, which aims to engage computer science students in Requirements En-
gineering (RE) through an open source DSL embedded in the Scala programming
language. [Question] The research question is: Which RE concepts are essential
to include in the metamodel for a requirements engineering tool in an educational
context? [Principal ideas] A survey instrument is developed, with a list of 92 con-
cepts (49 entities, 15 relations and 28 attributes) and a set of questions for each
concept, to elicit the respondents’ views on the usage and interpretation of each
concept. [Contribution] The survey is initially validated in a pilot study involving
14 Swedish RE scholars as subjects. The survey results indicate that the survey is
feasible. The analysis of the responses suggest that many of the concepts in the
metamodel are used frequently by the respondents and there is a large degree of
agreement among the respondents about the meaning of the concepts. The results
are encouraging for future work on empirical validation of the relevance of the
reqT metamodel.

Keywords: requirements engineering, metamodel, CASE tool, engineering edu-
cation, embedded domain-specific language, empirical software engineering.

1 Introduction

There are many challenges in teaching Requirements Engineering (RE) [4, 6], includ-
ing advancing students’ requirements modelling skills that can be used effectively in an
unstructured, non-ideal, real-world situation [1]. When teaching RE modelling we may
ask ourselves: What are the essential RE concepts that we should include in a taught
metamodel for requirements? This paper investigates this questions in conjunction with
the on-going work of developing a metamodel for reqT.org, an open source requirements
engineering tool used in RE education [7]. A survey instrument is presented aiming to
elicit the frequency of RE term usage and the degree of interpretation agreement. The
responses from 14 Swedish RE scholars are analysed and discussed and conclusions
suggest that a large subset of the concepts of the current reqT metamodel can be seen as
”essential” in that a majority of the subjects use them while agreeing with the concepts’
definitions. The presented work represents an initial validation of the survey instrument.
Further work involvingmore subjects is needed to draw conclusions with more certainty.

bjorn.regnell@cs.lth.se
http://reqT.org


2 Background

There are nowadays numerous commercial RE tools available, but many are expensive,
complex and not sufficiently open [2]. A major aim of the reqT open source project is to
provide a small but scalable, semi-formal and free software package for an educational
setting [7] that can inspire code-loving computer science students to learn more about
requirements modeling. The tool development started in 2011 at Lund University, where
reqT is used in RE teaching at MSc level in student role-playing projects.1

A critical issue is how to choose the essential RE concepts that allows for sufficient
expressiveness, while not overloading the metamodel with esoteric concepts just for the
sake of completeness.

The reqT metamodel includes three types of concepts: entities, attributes and rela-
tions. Entities and attributes are nodes in a graph data structure, while relations are edges
that can connect entities with sub-graphs. Thus a tree-like structure can be created of ar-
bitrary depth spanning the graph that models some chunk of requirements.

The code below shows a toy example of an orthogonal variability model [5] ex-
pressed in the reqT Scala-embedded DSL [7] illustrating a small part of its metamodel.
Other parts of the metamodel contains concepts that enable e.g. goal modelling, use case
modelling, and user story modelling, see further Appendix A.

Model(

Component("appearance") has (

VariationPoint("color") has (

Min(0), Max(2), Variant("blue"), Variant("red"), Variant("green")),

VariationPoint("shape") has (

Min(1), Max(1), Variant("round"), Variant("square")),

VariationPoint("payment") has (

Min(1), Max(2), Variant("cash"), Variant("credit")),

VariationPoint("payment") requires Variant("cash"),

Variant("round") excludes Variant("red"),

Variant("green") requires Variant("square")),

Component("appearance") requires VariationPoint("shape"),

App("free") has Component("appearance"),

App("free") binds (VariationPoint("shape") binds Variant("round")),

App("premium") has Component("appearance"),

App("premium") binds (

VariationPoint("color") binds (Variant("red"), Variant("green")),

VariationPoint("shape") binds (Variant("round"), Variant("square")),

VariationPoint("payment") binds Variant("cash")))

Entities in the above code listing are in bold, attributes in italics and relations start with a
lower case letter. In the reqT editor, entities, attributes, and relations are syntax-coloured
in blue, green and red respectively. A reqT model written in the above syntax is actually
valid Scala code that, when executed, generates a data structure that can be traversed and
manipulated using Scala scripts. Visualisations can be generated by export to GraphViz.
Export is also available to HTML and spreadsheet formats.

1 The Lund Univ. MSc-level RE course can be found at: http://cs.lth.se/education

http://cs.lth.se/education


3 Methodology and Data Collection

In order to validate RE scholar’s opinions of the metamodel, a survey instrument was
developed including the 49 entities, 15 relations and 28 attributes. All concepts and
definitions are listed in Appendix A. 2 The concepts were gathered from various sources
including the IREB Glossary 3, Wikipedia, agile development, variability [5] and goal
modelling, and the text book [3] used in an RE course at Lund Univ.1

Fig. 1. A screen dump of a part of the survey instrument.

The data collection wasmade during a Swedish national networkmeeting with academic
RE scholars in spring 2015. The survey was filled in during the meeting using the par-
ticipants’ own laptops in a spreadsheet shown in Fig. 1. The subjects were given around
20 minutes to complete the survey. Most of the subjects handed in the survey via email
directly after the session, while a few finished it after the meeting.

4 Data Analysis

Subject background. The background questions in the survey regards the role of the
subject, as shown in Table 1. The analyzed4 total number of subjects is 14, of which
10 are teachers, 10 are developers and 13 are researchers. The response rate was 100%
after a reminder was emailed to one missing subject.

Frequency analysis. The degree of ”essentiality” is characterized as the number of
subjects that has responded that they (1) use the concept at least in an informal, non-
persistent way, and that they (2) use the concept in a similar meaning as in the definition
in Appendix A. Fig. 1 shows the definitions of the three-level ordinal scales of Questions
2 The survey is available at https://github.com/reqT/reqT/tree/3.0.x/survey
3
https://www.ireb.org/en/cpre/cpre-glossary/

4 One subject answered NO on all background questions and was therefore excluded.

https://github.com/reqT/reqT/tree/3.0.x/survey
https://www.ireb.org/en/cpre/cpre-glossary/


Q1usage andQ2meaning respectively. Table 2 shows the results of the frequency counts.
If an ”essentiality threshold” is chosen atN/2 then only the 9 concepts from row n = 7
and below in Table 2 are considered ”non-essential”, hence showing that more than 90%
of the metamodel concepts have a majority of the subjects that use them and agree upon
their definitions. Each concept has at least one subject that uses it and agrees with its
definition.

The following 19 concepts were reported ”missing”: S01: or, S02: bug, threshold,
S04: role, problem, motivates, and, or, pattern, submodel, S06: plug-in, informalism,
S07: full sentence, S09: satisfaction, satisfies, customer, S11: system-of-interest, verifi-
cation, validation, S13: context. Thus, the concept ’or’ was the only concept that had
consensus among several subjects (S01, S04) as considered ”missing”.

The anonymised data and analysis scripts (developed using Scala and Apache POI)
are available at: https://github.com/bjornregnell/reqT-survey

Table 1. Background of subjects, N = 15. The subjects were given anonymous ids S01–S15.

Background question Subject responding YES
Do you teach software engineering and/or
requirements engineering? YES/NO

S01 S03 S04 S05 S07 S08 S09 S11 S12 S14

Do you develop software by writing code
and/or creating system models? YES/NO

S01 S02 S03 S07 S08 S09 S10 S11 S13 S14

Do you do academic research in software
and/or requirements engineering? YES/NO

S01 S03 S04 S05 S06 S07 S08 S09 S10 S11 S12 S13
S14

Table 2. Frequency analysis, where n is the number of subjects that for the respective concept
answered (Q1usage >= 1) and (Q2meaning = 2). In total there are 92 concepts (49 entities, 15
relations and 28 attributes). The higher up in the table, the more ”essential”. For n = 0, 2, 3, 5
the were no concepts with answers by that number of subjects.

n Entities Attributes Relations
14 Class, Component, UseCase,

Variant
Comment, Example, Max,
Min, Title

implements, verifies

13 Configuration, Data, Design,
Event, Quality, Scenario,
Stakeholder, System, Term

Code, Constraints, Cost,
FileName, Probability,
Profit, Spec, Why

excludes,
interactsWith, is,
relatesTo, requires

12 Actor, Domain, Feature,
Function, Interface, Module,
Relationship, Release, Req,
Risk, Service, State, Task,
Test

Benefit, Capacity,
Frequency, Input, Order,
Output, Prio, Text, Value

has, impacts

11 Idea, Label, Member, Meta,
MockUp, Section, User

Image precedes, superOf

10 Goal, Story Expectation

9 App, Issue, Target,
WorkPackage

Damage binds, helps

8 Item, Product, Resource,
VariationPoint

deprecates

7 Breakpoint, Screen Status

6 Barrier Deprecated hurts

4 Ticket

1 Epic Gist

https://github.com/bjornregnell/reqT-survey


5 Discussion and Conclusion

The presented survey is a pilot investigation with two main contributions: (1) the survey
instrument together with the data collection and analysis approach, which are shown to
be feasible in the presented context, and (2) the pilot study results: for more than 90%
of the 92 reqT metamodel concepts a majority of the 14 participating RE scholars claim
to use them and agree upon their definitions. Only 1 concept was considered missing by
more than one subject, while in total 19 additional concepts were reported missing by
some subject.

Limitations. It can be questioned if ”essentiallity” of a set of RE concepts can be
characterized by how many RE scholars that use them and agree upon their definition,
but it can also be argued that concept usage in an educational context is interesting to
investigate when developing a metamodel for an academic RE tool. A major threat to ex-
ternal validity is the limited number of subjects. Due to few subjects and the high degree
of homogeneity among subjects with respect to background, it is difficult to analyse and
draw conclusions e.g. about potential differences in opinions between e.g. teachers and
developers. Some subjects needed more time and completed their survey offline, which
may give a variation in how carefully the responses were considered.

Further work. When developing a metamodel it is interesting not just to ask if the
concepts to include are essential, but also to pose the question if the set of concepts
is complete. If some essential concept is missing from some stakeholder’s viewpoint,
then the metamodel is not sufficient. With more subjects participating in the presented
RE metamodel survey, the analysis of answers to further questions on alternative terms
and missing concepts will be enabled and beneficial to the further development of a
comprehensive and complete, but not overloaded, RE metamodel.

Acknowledgments. Thanks to Tobias Kaufmann and Klaus Pohl for contributions to the variabil-
ity model in Section 2. This work is partly funded by VINNOVA within the EASE project.

References

1. Callele, D., Makaroff, D.: Teaching requirements engineering to an unsuspecting audience. In:
Proceedings of the 37th SIGCSE technical symposium on Computer science education. pp.
433–437. SIGCSE ’06 (2006)

2. Carrillo de Gea, J., Nicolas, J., Aleman, J., Toval, A., Ebert, C., Vizcaino, A.: Requirements
engineering tools. Software, IEEE 28(4), 86 –91 (july-aug 2011)

3. Lauesen, S.: Software Requirements - Styles and Techniques. Addison-Wesley (2002)
4. Memon, R.N., Ahmad, R., Salim, S.S.: Problems in requirements engineering education: a

survey. In: Proceedings of the 8th International Conference on Frontiers of Information Tech-
nology. pp. 5:1–5:6. FIT ’10, ACM (2010)

5. Metzger, A., Pohl, K.: Variability management in software product line engineering. In: 29th
Int. Conf. on Softw. Eng. pp. 186–187. IEEE (2007)

6. Regev, G., Gause, D.C., Wegmann, A.: Experiential learning approach for requirements engi-
neering education. Requirements Engineering 14(4), 269 – 287 (2009)

7. Regnell, B.: reqt.org – towards a semi-formal, open and scalable requirements modeling tool.
In: Requirements Engineering: Foundation for Software Quality (REFSQ), 19th Int. Working
Conf. vol. Lecture Notes in Computer Science, 7830, pp. 112–118. Springer (2013)



Appendix A: Definitions of Metamodel Concepts of reqT v3.0

Entity Definition
Actor A human or machine that communicates with a system.
App A computer program, or group of programs designed

for end users, normally with a graphical user interface.
Short for application.

Barrier Something that makes it difficult to achieve a goal or a
higher quality level.

Breakpoint A point of change. An important aspect of a (non-
linear) relation between quality and benefit.

Class An extensible template for creating objects. A set of ob-
jects with certain attributes in common. A category.

Component A composable part of a system. A reusable, inter-
changeable system unit or functionality.

Configuration A specific combination of variants.
Data Information stored in a system.
Design A specific realization or high-level implementation de-

scription (of a system part).
Domain The application area of a product with its surrounding

entities.
Epic A large user story or a collection of stories.
Event Something that can happen in the domain and/or in the

system.
Feature A releasable characteristic of a product. A (high-level,

coherent) bundle of requirements.
Function A description of how input data is mapped to output

data. A capability of a system to do something specific.
Goal An intention of a stakeholder or desired system prop-

erty.
Idea A concept or thought (potentially interesting).
Interface A defined way to interact with a system.
Issue Something needed to be fixed.
Item An article in a collection, enumeration, or series.
Label A descriptive name used to identify something.
Member An entity that is part of another entity, eg. a field in a in

a class.
Meta A prefix used on a concept to mean beyond or about its

own concept, e.g. metadata is data about data.
MockUp A prototype with limited functionality used to demon-

strate a design idea.
Module A collection of coherent functions and interfaces.
Product Something offered to a market.
Quality A distinguishing characteristic or degree of goodness.
Relationship A specific way that entities are connected.
Release A specific version of a system offered at a specific time

to end users.
Req Something needed or wanted. An abstract term denot-

ing any type of information relevant to the (specifica-
tion of) intentions behind system development. Short
for requirement.

Resource A capability of, or support for development.
Risk Something negative that may happen.
Scenario A (vivid) description of a (possible future) system us-

age.
Screen A design of (a part of) a user interface.
Section A part of a (requirements) document.
Service Actions performed by systems and/or humans to pro-

vide results to stakeholders.
Stakeholder Someone with a stake in the system development or us-

age.
State Amode or condition of something in the domain and/or

in the system. A configuration of data.
Story A short description of what a user does or needs. Short

for user story.
System A set of interacting software and/or hardware compo-

nents.
Target A desired quality level or goal .
Task A piece of work (that users do, maybe supported by a

system).
Term A word or group of words having a particular meaning.
Test A procedure to check if requirements are met.
Ticket (Development) work awaiting to be completed.
UseCase A list of steps defining interactions between actors and

a system to achieve a goal.
User A human interacting with a system.
Variant An object or system property that can be chosen from

a set of options.
VariationPoint An opportunity of choice among variants.
WorkPackage A collection of (development) work tasks.

Attribute Definition
Benefit A characterisation of a good or helpful result or

effect (e.g. of a feature).
Capacity The largest amount that can be held or contained

(e.g. by a resource).
Code A collection of (textual) computer instructions in

some programming language, e.g. Scala. Short
for source code.

Comment A note that explains or discusses some entity.
Constraints A collection of propositions that restrict the pos-

sible values of a set of variables.
Cost The expenditure of something, such as time or ef-

fort, necessary for the implementation of an en-
tity.

Damage A characterisation of the negative consequences
if some entity (e.g. a risk) occurs.

Deprecated A description of why an entity should be avoided,
often because it is superseded by another entity,
as indicated by a ’deprecates’ relation.

Example A note that illustrates some entity by a typical in-
stance.

Expectation The required output of a test in order to be
counted as passed.

FileName The name of a storage of serialized, persistent
data.

Frequency The rate of occurrence of some entity.
Gist A short and simple description of an entity, e.g. a

function or a test.
Image (The name of) a picture of an entity.
Input Data consumed by an entity,
Max The maximum estimated or assigned (relative)

value.
Min The minimum estimated or assigned (relative)

value.
Order The ordinal number of an entity (1st, 2nd, ...).
Output Data produced by an entity, e.g. a function or a

test.
Prio The level of importance of an entity. Short for pri-

ority.
Probability The likelihood that something (e.g. a risk) occurs.
Profit The gain or return of some entity, e.g. inmonetary

terms.
Spec A (detailed) definition of an entity. Short for spec-

ification
Status A level of refinement of an entity (e.g. a feature)

in the development process.
Text A sequence of words (in natural language).
Title A general or descriptive heading.
Value An amount. An estimate of worth.
Why A description of intention. Rationale.

Relation Definition
binds Ties a value to an option. A configuration binds a

variation point.
deprecates Makes outdated. An entity deprecates (super-

sedes) another entity.
excludes Prevents a combination. An entity excludes an-

other entity.
has Expresses containment, substructure. An entity

contains another entity.
helps Positive influence. A goal helps to fulfil another

goal.
hurts Negative influence. A goal hinders another goal.
impacts Some influence. A new feature impacts an exist-

ing component.
implements Realisation of. A module implements a feature.
interactsWith Communication. A user interacts with an inter-

face.
is Sub-typing, specialization, part of another, more

general entity.
precedes Temporal ordering. A feature precedes (is imple-

mented before) another feature.
relatesTo General relation. An entity is related to another

entity.
requires Requested combination. An entity is required (or

wished) by another entity.
superOf Super-typing, generalization, includes another,

more specific entity.
verifies Gives evidence of correctness. A test verifies the

implementation of a feature.


